
Probing Black Hole Microstates

Stefano Giusto

October 18-19 2019

PRIN Kickoff Meeting - SNS



Overview



The Hawking paradox

• →
$ →% , Classical horizon ⇒

(i) AB are maximally entangled ⇒
(ii) A cannot be entangled with C ⇒
information loss !

Possible way outs

Typical black hole microstates have a smooth horizon but there are

non-local effects linking A to C ⇒ (ii) does not hold

(ER=EPR, Papadodimas-Raju, . . . )

Effective field theory fails at distances of the order of the black hole

horizon and a typical microstate does not have a smooth horizon ⇒
(i) does not hold

(Fuzzballs, firewalls, . . . )
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A holographic perspective

In some situations, a black hole is dual to an ensemble in a 2D CFT

Black hole
decoupling
−−−−−−−−→ AdS3

holography
←−−−−−−−→ 2D CFT

A b.h. microstate is dual to a “heavy” operator OH (∆H ∼ c � 1)

What is the description of OH when g2
s c � 1 ?

g 2
s c � 1

OH

←→

g 2
s c � 1

(EFT)

lp

RH

ds2
H
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The fuzzball program

• Smooth geometries dual to susy b.h. microstates are known

• We have some (but limited) results for non-susy b.h.

• There are non-trivial checks of the duality between ds2
H and OH

• The known geometries capture a parametrically small fraction of the

entropy of b.h. with a classically macroscopic horizon
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The fuzzball program

• Smooth geometries dual to susy b.h. microstates are known

• We have some (but limited) results for non-susy b.h.

• There are non-trivial checks of the duality between ds2
H and OH

• The known geometries capture a parametrically small fraction of the

entropy of b.h. with a classically macroscopic horizon

Can typical b.h. microstates be described in supergravity?

• Even if the answer is no, known microstates geometries encode

non-trivial information on the CFT at strong coupling
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Probing the microstates

• Microstates can be probed by “light” operators OL (∆L ∼ O(c0))

• 4-point correlators

〈ŌH(∞)OH(0)OL(z)ŌL(1)〉 ←→ 〈OL(z)ŌL(1)〉ds2
H

• They are non-protected and have informations on non-susy operators

• They diagnose information loss: they cannot decay at large t

• Correlators with OH cannot be computed with Witten diagrams

• Witten diagrams in AdS3 are subtle: no holographic correlator in a

2D CFT had been computed before

• In a certain limit: 〈ŌHOHOLŌL〉 → 〈ŌLOLOLŌL〉
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• 4-point correlators

〈ŌH(∞)OH(0)OL(z)ŌL(1)〉 ←→ 〈OL(z)ŌL(1)〉ds2
H

• They are non-protected and have informations on non-susy operators

• They diagnose information loss: they cannot decay at large t

• Correlators with OH cannot be computed with Witten diagrams

• Witten diagrams in AdS3 are subtle: no holographic correlator in a

2D CFT had been computed before

• In a certain limit: 〈ŌHOHOLŌL〉 → 〈ŌLOLOLŌL〉

Microstate geometries provide an alternative method to compute

holographic correlators
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Plan of the talk

The D1-D5-P black hole and the dual CFT

Construction of the microstate geometries

Holographic correlators and consistency with unitarity

Outlook and open problems

5



The D-brane system



The D1-D5-P black hole (Strominger, Vafa)

The extremal 3-charge black hole in type IIB on R4,1 × S1 × T 4

D15 D512345 P5
decoupling
−−−−−−−−→ AdS3 × S3 × T 4 ←→ 2DCFT

with vol(T 4) ∼ `4
s and R(S1)� `s

The 2D CFT is the (4, 4) D1D5 CFT with c = 6n1n5 ≡ 6N � 1

The CFT has a 20-dim moduli space:

free orbifold point ←→ RAdS � `s

strong coupling point ←→ RAdS � `s
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The D1-D5 CFT

Symmetries:

(4,4) SUSY with SU(2)L × SU(2)R R-symmetry ←→ S3 rotations

The symmetry algebra is generated by:

Ln , Jn , Gn+1/2

The orbifold point: sigma-model on (T 4)N/SN
The elementary fields are 4 bosons, 4 fermions and twist fields

Chiral primary operators:

O(j,j̄) with h = j , h̄ = j̄

(and their descendants with respect to the symmetry algebra) are

protected: conformal dimensions and 3-point functions do not

depend on the moduli

7



Microstate geometries



The graviton gas

If Ok is a (anti)CPO of dimension k one can consider its

descendants with respect to the global symmetry algebrra

Ok,m,n,q ≡ (J+
0 )m(L−1)n(G+1

− 1
2

G+2
− 1

2

)q Ok

“Semi-classical” states are coherent states

|B1,B2, . . .〉 ≡
∑

p1,p2,...

(B1Ok1,m1,n1,q1 )p1 (B2Ok2,m2,n2,q2 )p2 . . . |0〉

When B2
i ∼ N � 1 the pi -sum is peaked for pi ≈ B2

i /k
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The graviton gas

If Ok is a (anti)CPO of dimension k one can consider its

descendants with respect to the global symmetry algebrra

Ok,m,n,q ≡ (J+
0 )m(L−1)n(G+1

− 1
2

G+2
− 1

2

)q Ok

“Semi-classical” states are coherent states

|B1,B2, . . .〉 ≡
∑

p1,p2,...

(B1Ok1,m1,n1,q1 )p1 (B2Ok2,m2,n2,q2 )p2 . . . |0〉

When B2
i ∼ N � 1 the pi -sum is peaked for pi ≈ B2

i /k

What is the gravitational description of |B1,B2, . . .〉?

8



Superstrata: construction

|0〉 ←→ AdS3 × S3

Holography associates to Ok a sugra field φk : Ok ←→ φk

At linear order in Bi |B1, . . .〉 is a perturbation of the vacuum

|0〉+ Bi Oki ,mi ,ni ,qi |0〉 ←→ AdS3 × S3 + Bi φki ,mi ,ni ,qi

where φki ,mi ,ni ,qi solves the linearised sugra eqs. around AdS3 × S3

φk,m,n,0 =
ρn

(ρ2 + 1)
n+k

2

sink−m θ cosm θ e i [(k−m)φ−mψ+(k+n)τ+nσ]

One can extend the linearised solution to an exact solution of the

sugra eqs. valid for B2
i ∼ N

The non-linear extension is non-unique: ambiguities are fixed by

imposing regularity
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Superstrata: result

The non-linear solutions are smooth and horizonless

The solutions are asymptotically AdS3 × S3 but in the interior AdS3

and S3 are non-trivially mixed

The solutions can be glued back to flat space → R4,1 × S1

(after spectral flow to the R sector)

There is a continuous family of solutions, parametrised by Bi , for

fixed values of the global D1, D5, P charges

R4,1 × S1

AdS3 × S3

←− r ∼ RHor no horizon!
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Holographic probes



HHL correlators (Kanitscheider, Skenderis, Taylor; SG, Moscato, Rawash, Russo, Turton)

Consider

〈OL〉H ≡ 〈ŌH(∞)OH(0)OL(1)〉

with

OH =
∑

p1,...
(B1Ok1,m1,n1,q1 )p1 . . .

holography
←−−−−−−−→ ds2

H

OL = Ok
holography
←−−−−−−−→ φk

〈ŌHOHOL〉 do not depend on the CFT moduli ⇒
One can extract 〈Ok〉H from the geometry ds2

H

φk
ρ→∞−→ ρ−k 〈Ok〉H

and compare with the value computed in the orbifold CFT

What we learn:

Microstate geometries must have non-trivial multiple moments

Non-trivial checks of the sugra construction, including the non-linear

completion
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HHLL correlators

How to compute holographically

CH(z , z̄) ≡ 〈ŌH(∞)OH(0)OL(z , z̄)ŌL(1)〉

OL(z , z̄) ≡ Ok(z , z̄) ←→ φk(ρ; z , z̄)

Solve the linearised e.o.m. for φk in the background ds2
H ←→ OH

Pick the non-normalisable solution such that

at the boundary (ρ→∞)

vev of OL(z , z̄)
↗

φk(ρ; z , z̄)
ρ→∞−→ δ(z − 1) ρk−2 + b(z , z̄) ρ−k

↘
source for ŌL(1)

in the interior (ρ→ 0) φ(ρ; z , z̄) is regular

The correlator is given by

CH(z , z̄) = 〈OH |OL(z , z̄)ŌL(1)|OH〉 = b(z , z̄)

12



A simple example (Bombini, Galliani, SG, Moscato, Russo)

We take

OH =
∑
p

(B O1)p , OL = O1

OH is a chiral primary ⇒ P = 0

The ensemble of chiral primaries corresponds to a “small black hole”

(massless limit of BTZ)

ds2

R2
AdS

=
dρ2

ρ2
+ ρ2(−dτ 2 + dσ2) + dΩ2

3

The geometry ds2
H dual to OH approximates the small black hole

geometry in the limit B2 → N

Computing CH for heavy states with P 6= 0 and finite B is harder,

but see also Bena, Heidmann, Monten, Warner
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Result

Gravity

CH = α
∑
l∈Z

e ilσ
∞∑
n=1

exp

[
−iα

√
(|l |+ 2n)2 + (1−α2)l2

α2 τ

]
√

1 + 1−α2

α2
l2

(|l|+2n)2

with z = e i(τ+σ), z̄ = e i(τ−σ), α =
(

1− B2

N

)1/2

Free CFT

CH =
1

|1− z |2
+

B2

2N

|z |2 + |1− z |2 − 1

|1− z |2
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The late time behaviour of the HHLL correlator

We focus on the limit B2 → N ⇔ α→ 0

in which ds2
H approximates the “small b.h.”

In this limit the series giving CH is dominated by terms with n� |l|
2α :

CH ∼
[

1

1− e i(σ−τ)
+

1

1− e−i(σ+τ)
− 1

]
α

1− e−2iα τ

The time-dependence of the correlator is controlled by α:

for τ � α−1 one has CH ∼ τ−1;

this is the same behaviour of the 2-point function in the “small b.h.”

for τ & α−1 CH stops decreasing with τ and oscillates

Correlators in a pure or thermal state in a unitary theory with finite

entropy do not vanish at late times

The late-time behaviour of CH is consistent with unitarity already at

large c
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A comment on the method

Holographic correlators of single-trace operators (like OL) are usually

computed by summing Witten diagrams

This technique has not been extend to correlators with multi-trace

operators (like OH)

Even for single-trace correlators, the Witten-diagram method in

AdS3 has not been fully developed (the 4-point couplings are not

known)

Our approach bypasses Witten diagrams:

OH

_
OH

OL OL

_

+

OH

_
OH

OL OL

_

+ . . . →

OL OL

_

X
ds2H
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LLLL limit (SG, Russo, Tyukov, Wen)

For B2
k � N heavy operators become light:

OH −→ BkOk ≡ OL for B2
k = 1

Naively one expects

〈ŌH(∞)OH(0)OL(1)ŌL(z)〉
B2
k→1

−−−−−→ 〈ŌL(∞)OL(0)OL(1)ŌL(z)〉

This is not correct but it works for z → 1:

the B2
k → 1 limit of the HHLL correlator correctly captures

all the single-trace operators exchanged between OL and ŌL

Using various consistency requirements (bootstrap) one can uniquely

reconstruct 〈ŌLOLOLŌL〉 from its z → 1 limit
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Summary and outlook



Results

At strong coupling some heavy states in the black hole ensemble are

described by smooth horizonless geometries

HHL correlators can be used to construct and check the map

between states and geometries

Microstate geometries contain non-trivial informations on HHLL and

LLLL correlators

If probed for a short time microstates are indistinguishable from the

black hole, but for sufficiently long times microstates deviate from

the black hole and produce correlators that are consistent with

unitarity already at large c

These results are solid for susy states: there is a string-motivated

mechanism to have non-trivial structure at the horizon scale
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Open problems

Classical supergravity works well for atypical states in the black hole

ensemble

For some observables, deviations from a typical state and the

classical black hole should be exponentially suppressed in the entropy

How much of our analysis can be extended to typical states?

And what about microstates of non-BPS black holes?

Can one make (semi)quantitative predictions that could be tested

experimentally (GW, EHT)?

At which scale the geometry of a typical microstate starts to deviate

from the classical black hole?

What is the dynamics controlling the interaction between a typical

non-BPS fuzzball and infalling particles? How absorptive is the

fuzzball surface?
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Outlook

Even if the general fuzzball paradigm is correct, it is possible that

classical supergravity probes cannot resolve the structure of typical

states

Do we have quantitative tools to describe microstates beyond

supergravity?

Does one need to resort to full string theory?

(Massai, Martinec, Turton)

Or use insights from the CFT at strong coupling?

(Bootstrap, Lorentzian Inversion Formula, ...)
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